Extensions 1→N→G→Q→1 with N=C3 and Q=C325SD16

Direct product G=N×Q with N=C3 and Q=C325SD16
dρLabelID
C3×C325SD16484C3xC3^2:5SD16432,422

Semidirect products G=N:Q with N=C3 and Q=C325SD16
extensionφ:Q→Aut NdρLabelID
C31(C325SD16) = C3317SD16φ: C325SD16/C3×C3⋊C8C2 ⊆ Aut C372C3:1(C3^2:5SD16)432,444
C32(C325SD16) = C3315SD16φ: C325SD16/C3×Dic6C2 ⊆ Aut C372C3:2(C3^2:5SD16)432,442
C33(C325SD16) = C3318SD16φ: C325SD16/C12⋊S3C2 ⊆ Aut C3484C3:3(C3^2:5SD16)432,458

Non-split extensions G=N.Q with N=C3 and Q=C325SD16
extensionφ:Q→Aut NdρLabelID
C3.1(C325SD16) = C6.D36φ: C325SD16/C3×C3⋊C8C2 ⊆ Aut C3724+C3.1(C3^2:5SD16)432,63
C3.2(C325SD16) = C18.D12φ: C325SD16/C3×Dic6C2 ⊆ Aut C3724+C3.2(C3^2:5SD16)432,73
C3.3(C325SD16) = He34SD16φ: C325SD16/C12⋊S3C2 ⊆ Aut C37212-C3.3(C3^2:5SD16)432,84

׿
×
𝔽